Developing antibodies to Arabidopsis thaliana translation initiation factor eIF4G
نویسنده
چکیده
In eukaryotes, a key way to regulate biochemical pathways and protein synthesis is through translation, the reading of an mRNA sequence to make proteins and enzymes. In translation, one of the main steps that can be regulated is the formation of the initiation complex, which is necessary to position the machinery at the right spot on the mRNA before protein can be generated. A major player in translation initiation is the eIF4F complex (eukaryotic initiation factor 4F), made up of three different proteins: eIF4A, eIF4E and eIF4G. The eIF4F complex specifically functions to recruit the small ribosomal unit, which serves as an interface between mRNA and the new protein being made, to the correct place on the existing mRNA strand. In this way, eIF4F may control the rate of protein synthesis and, ultimately, the abundance, or conversely the absence, of specific proteins in organisms. Therefore, the eIF4F complex may be useful in controlling expression systems, which can range in application from hormone production in animals to synthesizing useful medicines in plants. One of the major goals of the Browning lab is to understand better the effects of eukaryotic initiation factor mutants on phenotype in the Arabidopsis thaliana plant. One part of the lab research thus focuses on the generation of " knock out " A. thaliana mutants, eliminating one or a combination of initiation factors. Antibodies specific to the different initiation factors are useful for assaying protein expression and for immunolocalization, which allows you to visualize the presence or location of the protein which bind to that antibody. While antibodies have been generated for several initiation factors already, some still remain elusive. In a previous project, I produced antibodies to the Arabidopsis eIF4F complex and the lab already possesses Arabidopsis (At) eIF4E antibody. However, antibodies specific to AteIF4G have not yet been made, due to difficulties 4 producing ample AteIF4G protein for antibody generation. It is important to differentiate between Arabidopsis and wheat initiation factors, as the possessed wheat eIF4G antibody does not cross-react with AteIF4G. A large part of the problem may be attributed to A. thaliana eIF4G protein instability compared to wheat eIF4G; the protein is prone to rapid degradation and low expression levels in E. coli. In order to optimize the expression of AteIF4G, different vectors, expression systems, growth media, bacterial growth conditions and protein size were tried. In testing different vectors and expression systems, I looked …
منابع مشابه
Two Arabidopsis loci encode novel eukaryotic initiation factor 4E isoforms that are functionally distinct from the conserved plant eukaryotic initiation factor 4E.
Canonical translation initiation in eukaryotes begins with the Eukaryotic Initiation Factor 4F (eIF4F) complex, made up of eIF4E, which recognizes the 7-methylguanosine cap of messenger RNA, and eIF4G, which serves as a scaffold to recruit other translation initiation factors that ultimately assemble the 80S ribosome. Many eukaryotes have secondary EIF4E genes with divergent properties. The mod...
متن کاملTranslation Initiation Factor AteIF(iso)4E Is Involved in Selective mRNA Translation in Arabidopsis Thaliana Seedlings
One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5'end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso)4F complexes proposed to mediate selective ...
متن کاملEvidence for variation in the optimal translation initiation complex: plant eIF4B, eIF4F, and eIF(iso)4F differentially promote translation of mRNAs.
Eukaryotic initiation factor (eIF) 4B is known to interact with multiple initiation factors, mRNA, rRNA, and poly(A) binding protein (PABP). To gain a better understanding of the function of eIF4B, the two isoforms from Arabidopsis (Arabidopsis thaliana) were expressed and analyzed using biophysical and biochemical methods. Plant eIF4B was found by ultracentrifugation and light scattering analy...
متن کاملPhotosynthetic Control of Arabidopsis Leaf Cytoplasmic Translation Initiation by Protein Phosphorylation
Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which invol...
متن کاملA host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection.
The viral genome-linked protein, VPg, of potyviruses is a multifunctional protein involved in viral genome translation and replication. Previous studies have shown that both eukaryotic translation initiation factor 4E (eIF4E) and eIF4G or their respective isoforms from the eIF4F complex, which modulates the initiation of protein translation, selectively interact with VPg and are required for po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007